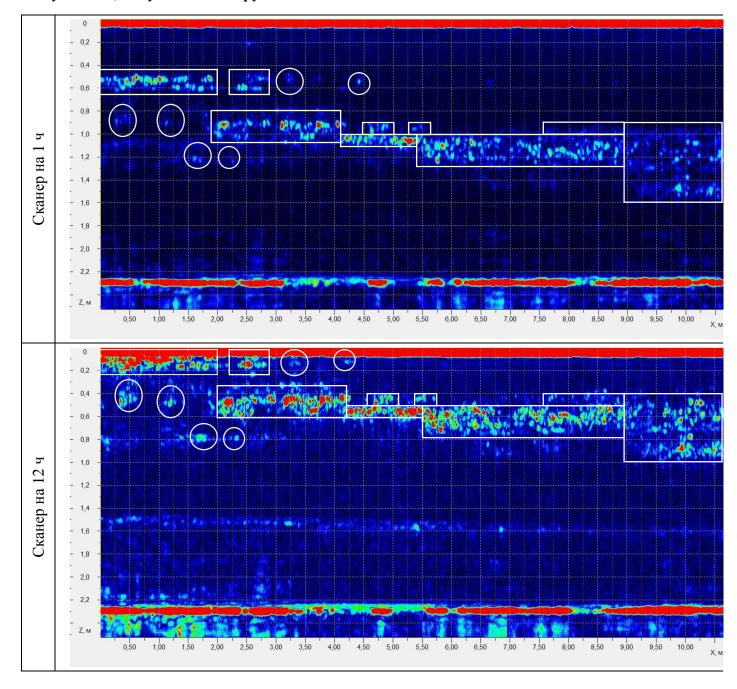
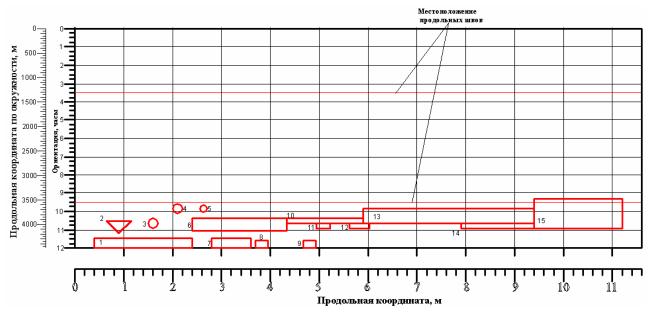
Отчет по результатам испытания ультразвукового сканера-дефектоскопа A2075 «SoNet» на объектах ООО «Газпром трансгаз Екатеринбург»

Цель испытаний: Определение эффективности сканера-дефектоскопа и оценка его основных рабочих характеристик при неразрушающем контроле основного металла тела трубы и продольных сварных швов.

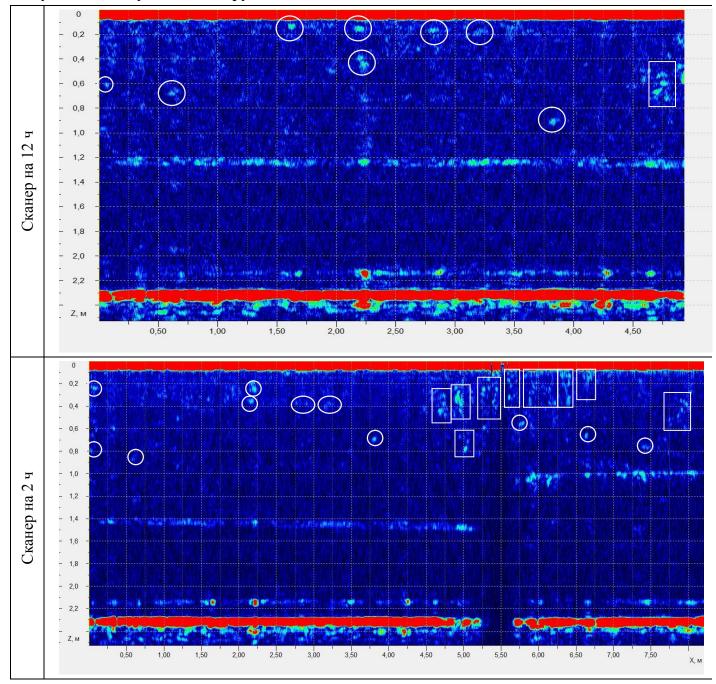
Используемое оборудование: Электромагнитно-акустический сканер-дефектоскоп типа A2075 «SoNet» для ультразвукового волноводного контроля трубопроводов, разработанный, изготовленный и предъявленный для испытаний компанией ООО «Акустические Контрольные Системы». Разработка сканера дефектоскопа выполнялась в соответствии с техническим заданием по согласованию с Управлением по транспортировке газа и газового конденсата ОАО «Газпром» совместно со специалистами ЭАЦ «Оргремдигаз» ДОАО Оргэнергогаз».

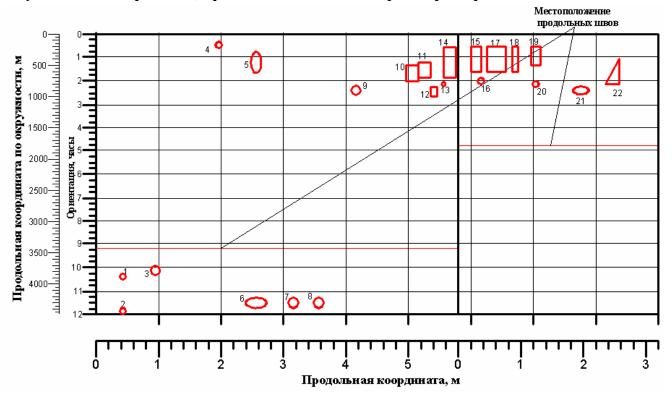

Место и дата проведения испытаний: ООО «Газпром трансгаз Екатеринбург», Копейский завод по изоляции труб, 25 марта 2009 года.


Объект контроля: образцы труб, вырезанные из линейной части трубопровода, длиной от 9 до 11 метров, диаметром 1420 и 1020 мм, с имеющимися на них коррозионными дефектами и дефектами КРН.

Краткая методика работы: Сканирование каждой трубы осуществлялось по двум линиям на различных часах. Полученные результаты анализировались совместно и формировалась сводная таблица координат обнаруженных дефектов. Для идентификации дефектов и подтверждения результатов сканирования предполагается использование стандартных средств неразрушающего контроля.

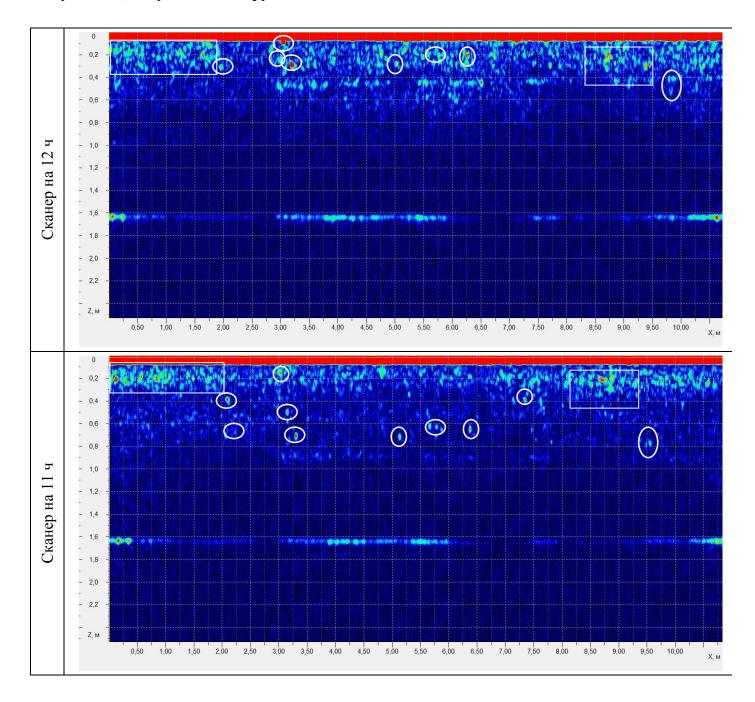
Демонстрация проводилась совместно с ООО «ГазПриборТехнология»


Результаты, полученные на трубе №1 Ø1420мм:



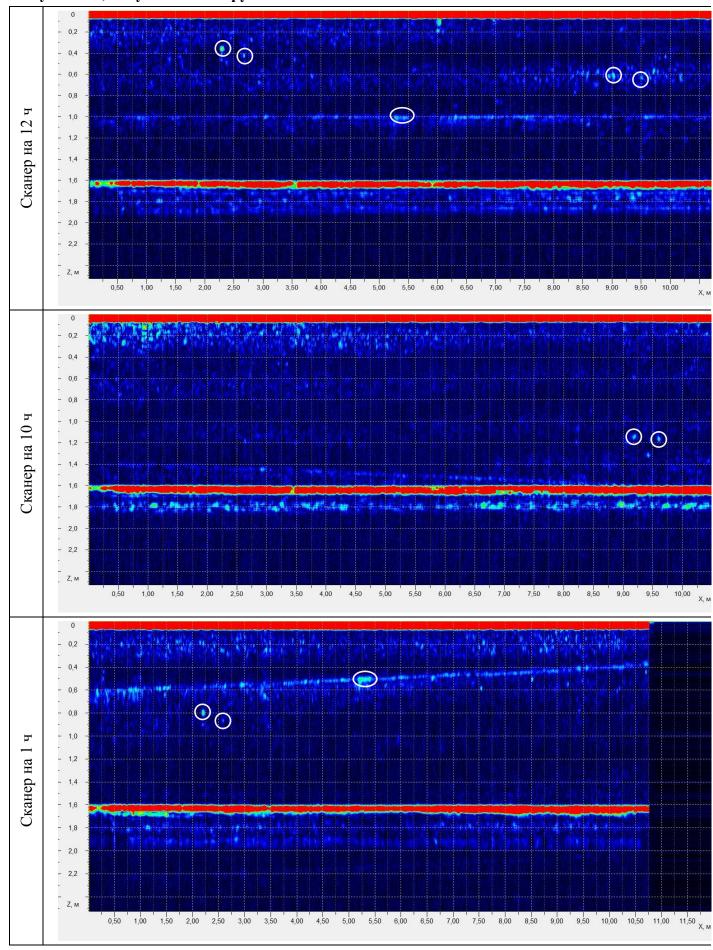
Номер трубы/д ефекта	Расстояние от "о" точки, мм		Расстоя ближа продольн мм (-	йшего Ориен окру		ация по ности, сы	Длина аномалии, мм	Ширина аномалии	
	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии		MM	час
1	3	4	5	6	7	8	9	10	11
№1 1420									
1	400	2400	-730	-930	11,5	12	2000	200	0,5
2	650	1150	-380	-630	10,5	11,2	500	250	0,7
3	1500	1700	-330	-530	10,3	10,9	200	200	0,6
4	2000	2200	-30	-230	9,5	10,1	200	200	0,6
5	2560	2700	-60	-200	9,6	10	140	140	0,4
6	2400	4340	-330	-580	10,3	11	1940	250	0,7
7	2800	3600	-730	-930	11,4	12	800	200	0,6
8	3700	3950	-780	-930	11,6	12	250	150	0,4
9	4680	4930	-780	-930	11,6	12	250	150	0,4
10	4340	5900	-330	-430	10,3	10,7	1560	100	0,3
11	4940	5220	-430	-540	10,7	11	280	100	0,3
12	5620	6030	-430	-540	10,7	11	410	100	0,3
13	5900	9400	-130	-430	9,8	10,7	3500	300	0,9
14	7900	9400	-430	-530	10,7	11	1500	100	0,3
15	9400	11200	+70	-530	9,3	11	1800	600	0,7

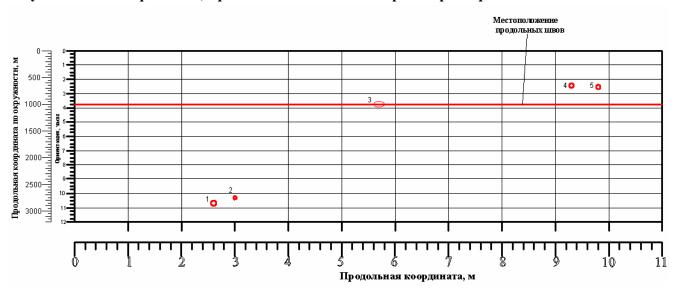
Результаты, полученные на трубе №2 Ø1420мм:



Номер трубы/д ефекта	Расстояние от "о" точки, мм		продольного шва		окруж	ация по ности, сы	Длина аномалии, мм	т ппирин	
	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии		MM	час
1	3	4	5	6	7	8	9	10	11
№ 2 1420									
1	375	475	-430	-480	10,3	10,4	100	50	0,1
2	375	475	-950	-1050	11,7	12	100	100	0,3
3	870	1020	-280	-430	9,9	10,3	150	150	0,4
4	1910	2010	-1170	-1270	0,3	0,6	100	100	0,3
5	2480	2640	-1330	-1660	0,7	1,7	164	330	1
6	2400	2720	-790	-960	11,3	11,7	330	160	0,4
7	3080	3240	-790	-960	11,3	11,7	160	160	0,4
8	3480	3640	-790	-960	11,3	11,7	160	160	0,4
9	4080	4230	-1870	-2020	2,2	2,6	150	150	0,4
10	4960	5160	-1550	-1800	1,3	2	200	250	0,7
11	5160	5360	-1500	-1750	1,2	1,9	200	250	0,7

12	5360	5460	-1900	-2050	2,2	2,7	100	150	0,5
13	5530	5590	-1820	-1880	2,1	2,2	60	60	0,1
14	5560	5760	-1260	-1750	0,6	1,9	200	490	1,3
15	6000	6160	-1250	-1650	0,6	1,6	160	400	1
16	6110	6210	-1750	-1850	1,9	2,1	100	100	0,2
17	6260	6560	-1250	-1650	0,6	1,6	300	400	1
18	6660	6760	-1250	-1650	0,6	1,6	100	400	1
19	6960	7110	-1250	-1550	0,6	1,3	150	300	0,7
20	6990	7090	-1800	-1900	2	2,2	100	100	0,2
21	7640	7890	-1890	-2010	2,2	2,5	250	120	0,3
22	8160	8370	-1450	1850	1,1	2,1	210	400	1


Результаты, полученные на трубе №1 Ø1020мм:



отпештие обпаружениям дефектов.										
Номер трубы/д ефекта	Расстояние от "о" точки, мм		точки, ближайшего окруж		ация по ности, сы	Длина аномалии, мм	Ширина аномалии			
	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии		MM	час	
1	3	4	5	6	7	8	9	10	11	
№1 1020										
1	500	2000	+425	+575	11,7	0,3	1500	150	0,6	
2	2670	2730	+170	+230	1	1,2	60	60	0,2	
3	2670	2730	+500	+560	11,8	12	60	60	0,2	
4	3660	3740	+710	+790	10,9	11,1	80	80	0,2	
5	3750	3850	+360	+460	0,2	0,6	100	100	0,4	
6	6850	6950	+170	+270	0,9	1,3	100	100	0,4	
7	5770	5830	+190	+250	1	1,2	60	60	0,2	
8	6200	6400	+240	+360	0,5	1	200	125	0,5	
9	6950	7050	+250	+350	0,6	1	100	100	0,4	
10	7870	7930	+500	+560	11,8	12	60	60	0,2	
11	9000	10240	+185	+400	0,3	1,1	1240	200	0,8	
12	10650	10750	+50	+150	1,3	1,7	100	100	0,4	

Результаты, полученные на трубе №2 Ø1020мм:

Номер трубы/д ефекта	Расстояние от "о" точки, мм		точки, продольного шва.		Ориентация по окружности, часы		Длина аномалии, мм		оина алии
	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии	до начала аномалии	до конца аномалии		MM	час
1	3	4	5	6	7	8	9	10	11
№2 1020									
1	2550	2650	+1300	+1400	10,5	10,8	100	100	0,3
2	2970	3030	+1420	+1480	10,2	10,4	60	60	0,2
3	5560	5760	0	0	3,7	3,7	200	50	0
4	9260	9340	+310	+390	2,3	2,5	80	80	0,2
5	9760	9840	+280	+360	2,4	2,6	80	80	0,2

Основные выводы:

- 1. Наибольшая дефектоскопическая чувствительность сканера-дефектоскопа обеспечивается для трещин, имеющих продольную относительно оси трубы ориентацию.
- 2. Для окончательного определения типа и точных размеров дефектов необходимо использовать вспомогательные стандартные средства неразрушающего контроля.
- 3. Для упрощения интерпретации полученных результатов, однозначного определения координат дефектов по окружности и для устранения мертвых зон при условии сканирования по одной линии (12 часов), необходимо выполнить доработку сканерадефектоскопа до многоканального варианта.
- 4. Для исключения физического участия оператора в процедурах сканирования предусмотреть технические решения, обеспечивающие переезд сканирующего устройства через кольцевые сварные швы и смещение его по окружности при попадании преобразователя на продольный сварной шов.
- 5. Экономическая целесообразность использования сканера-дефектоскопа состоит в снижении затрат времени на выявление аномальных зон на теле исследуемой трубы.